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Abstract. Deep learning techniques have achieved promising perfor-
mance for computer-aided diagnosis, which is beneficial to alleviate the
workload of clinicians. However, due to the scarcity of diseased sam-
ples, medical image datasets suffer from an inherent imbalance, and lead
diagnostic algorithms biased to majority categories. This degrades the
diagnostic performance, especially in recognizing rare categories. Exist-
ing works formulate this challenge as long-tails and adopt decoupling
strategies to mitigate the effect of the biased classifier. But these works
only use the imbalanced dataset to train the encoder and resample data
to re-train the classifier by discarding the samples of head categories,
thereby restricting the diagnostic performance. To address these prob-
lems, we propose a Multi-view Relation-aware Consistency and Virtual
Features Compensation (MRC-VFC) framework for long-tailed medi-
cal image classification in two stages. In the first stage, we devise a
Multi-view Relation-aware Consistency (MRC) for representation learn-
ing, which provides the training of encoders with unbiased guidance in
addition to the imbalanced supervision. In the second stage, to produce
an impartial classifier, we propose the Virtual Features Compensation
(VFC) to recalibrate the classifier by generating massive balanced virtual
features. Compared with the resampling, VFC compensates the minor-
ity classes to optimize an unbiased classifier with preserving complete
knowledge of the majority ones. Extensive experiments on two long-tailed
public benchmarks confirm that our MRC-VFC framework remarkably
outperforms state-of-the-art algorithms.
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1 Introduction

Recent years have witnessed the great success of deep learning techniques in
various applications on computer-aided diagnosis [5,6,9,23]. However, the chal-
lenge of class imbalance inherently exists in medical datasets due to the scarcity
of target diseases [7], where normal samples are significantly more than dis-
eased samples. This challenge leads the model training biased to the majority
categories [13] and severely impairs the performance of diagnostic models in
real-world scenarios [8,18]. Therefore, it is urgent to improve the performance of
diagnostic models in clinical applications, especially to achieve balanced recog-
nition of minority categories.

Technically, the issue of class imbalance is formulated as a long-tailed problem
in existing works [10,12,15], where a few head classes contain numerous samples
while the tail classes comprise only a few instances [28]. To address this issue,
most of the previous methods have typically attempted to rebalance the data
distribution through under-sampling the head classes [2], over-sampling the tail
classes [21], or reweighting the contribution of different classes during the opti-
mization process [4,8]. Nevertheless, these resampling methods can encounter a
decrease in performance on certain datasets since the total information volume of
the dataset is either unchanged or even reduced [29]. Recent advantages in long-
tailed medical image classification have been achieved by two-stage methods,
which first train the model on the entire dataset and then fine-tune the clas-
sifier in the second stage using rebalancing techniques to counteract the class
imbalance [12,14,15,19]. By decoupling the training of encoders and classifiers,
the two-stage methods can recalibrate the biased classifiers and utilize all of the
training samples to enhance representation learning for the encoder.

Although the aforementioned decoupling methods [14,15] have somewhat
alleviated the long-tails, the classification performance degradation in the minor-
ity classes remains unsolved, which can be attributed to two challenges. First,
in the first stage, the decoupling methods train the model on the imbalanced
dataset, which is insufficient for representation learning in the rare classes due to
the scarcity of samples [17]. To this end, improving the first-stage training strat-
egy to render effective supervision on representation learning is in great demand.
The second problem lies in the second stage, where decoupling methods freeze the
pre-trained encoder and fine-tune the classifier [14,15]. Traditional rebalancing
techniques, such as resampling and reweighting, are used by the decoupling meth-
ods to eliminate the bias in the classifier. However, these rebalancing strategies
have intrinsic drawbacks, e.g., resampling-based methods discard the samples
of head classes, and reweighting cannot eliminate the imbalance with simple
coefficients [26]. Thus, a novel approach that can perform balanced classifier
training by generating abundant features is desired to recalibrate the classifier
and preserve the representation quality of the encoder.

To address the above two challenges, we propose the MRC-VFC framework
that adopts the decoupling strategy to enhance the first-stage representation
learning with Multi-view Relation-aware Consistency (MRC) and recalibrate the
classifier using Virtual Features Compensation (VFC). Specifically, in the first
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Fig. 1. The MRC-VFC framework. In stage 1, we perform the representation learning
with the MRC module for the encoder on the imbalanced dataset. In stage 2, we
recalibrate the classifier with VFC in two-step of the expectation and maximization.

stage, to boost the representation learning under limited samples, we build a two-
stream architecture to perform representation learning with the MRC module,
which encourages the model to capture semantic information from images under
different data perturbations. In the second stage, to recalibrate the classifier, we
propose to generate virtual features from multivariate Gaussian distribution with
the expectation-maximization algorithm, which can compensate for tail classes
and preserves the correlations among features. In this way, the proposed MRC-
VFC framework can rectify the biases in the encoder and classifier, and construct
a balanced and representative feature space to improve the performance for rare
diseases. Experiments on two public dermoscopic datasets prove that our MRC-
VFC framework outperforms state-of-the-art methods for long-tailed diagnosis.

2 Methodology

As illustrated in Fig. 1, our MRC-VFC framework follows the decoupling strat-
egy [14,31] to combat the long-tailed challenges in two stages. In the first stage,
we introduce the Multi-view Relation-aware Consistency (MRC) to boost repre-
sentation learning for the encoder g. In the second stage, the proposed Virtual
Features Compensation (VFC) recalibrates the classifier f by generating massive
balanced virtual features, which compensates the tails classes without dropping
the samples of the head classes. By enhancing the encoder with MRC and recali-
brating the classifier with VFC, our MRC-VFC framework can perform effective
and balanced training on long-tailed medical datasets.
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2.1 Multi-view Relation-Aware Consistency

The representation learning towards the decoupling models is insufficient [28,
29]. To boost the representation learning, we propose the Multi-view Relation-
aware Consistency to encourage the encoder to apprehend the inherent semantic
features of the input images under different data augmentations. Specifically,
we build a student neural network f · g for the strong augmented input xs and
duplicate a teacher model f ′ · g′ for the weak augmented input xw. The two
models are constrained by the MRC module to promote the consistency for
different perturbations of the same input. The parameters of the teacher model
are updated via an exponential moving average of the student parameters [24].

To motivate the student model to learn from the data representations but
the ill distributions, we propose multi-view constraints on the consistency of two
models at various phases. A straightforward solution is to encourage identical
predictions for different augmentations of the same input image, as follows:

Lprob =
1
B

KL(f · g(xs), f ′ · g′(xw)), (1)

where KL(·, ·) refers to the Kullback-Leibler divergence to measure the difference
between two outputs. As this loss function calculates the variance of classifier
output, the supervision for the encoders is less effective. To this end, the proposed
MRC measures the sample-wise and channel-wise similarity between the feature
maps of two encoders to regularize the consistency of the encoders. We first
define the correlations of individuals and feature channels as Sb(z) = z ·zᵀ and
Sc(z) = zᵀ · z, where z = g(xs) ∈ R

B×C is the output features of the encoder,
and B and C are the batch size and channel number. Sb(z) denotes the Gram
matrix of feature z, representing the correlations among individuals, and Sc(z)
indicates the similarities across feature channels. Thus, the consistency between
the feature maps of two models can be defined as:

Lbatch =
1
B

||Sb(g(xs)) − Sb(g′(xw))||2, (2)

Lchannel =
1
C

||Sc(g(xs)) − Sc(g′(xw))||2. (3)

Furthermore, we also adopt the cross-entropy loss LCE = 1
BL(f · g(xw), y),

where y denotes the ground truth, between the predictions and ground truth
to ensure that the optimization will not be misled to a trivial solution. The
overall loss function is summarized as Lstage1 = LCE + λ1Lbatch + λ2Lchannel +
λ3Lprob, where λ1, λ2 and λ3 are coefficients to control the trade-off of each
loss term. By introducing extra semantic constraints, the MRC can enhance the
representation capacity of encoders. The feature space generated by the encoders
is more balanced with abundant semantics, thereby facilitating the MRC-VFC
framework to combat long-tails in medical diagnosis.
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2.2 Virtual Features Compensation

Recalling the introduction of decoupling methods, the two-stage methods [14]
decouple the training of the encoder and classifier to eliminate the bias in the
classifier while retaining the representation learning of the encoder. However,
most existing decoupling approaches [12,15] employ the resampling strategy in
the second stage to rebalance the data class distribution, causing the intrinsic
drawbacks of the resampling of discarding the head class samples. To handle
this issue, we propose Virtual Features Compensation, which generates virtual
features zk ∈ R

Nk×C for each class k under multivariate Gaussian distribution [1]
to combat the long-tailed problem. Different from existing resampling methods
[2], the feature vectors produced by the VFC module preserve the correlations
among classes and the semantic information from the encoder. Given the k-th
class, we first calculate the class-wise Gaussian distribution with mean μk and
covariance Σk, as follows:

μk =
1

Nk

∑

x∈Xk

gI(x), Σk =
1

Nk − 1

∑

x∈Xk

(x − μk)
ᵀ(x − μk), (4)

where Xk denotes the set of all samples in the k-th class, and gI(·) denotes the
encoder trained in the first stage on the imbalanced dataset and Nk is the sample
number of the k-th class. We then randomly sample R feature vectors for each
category from the corresponding Gaussian distribution N (μk,Σk) to build the
unbiased feature space, as {Vk ∈ R

R×C}Kk=1. We re-initialize the classifier and
then calibrated it under cross-entropy loss, as follows:

LM
stage2 =

1
RK

K∑

k=1

∑

v i∈Vk

LCE(f(vi), y), (5)

where K is the number of categories in the dataset. As the Gaussian distribu-
tion is calculated according to the statistics from the first-stage feature space,
to further alleviate the potential bias, we employ the expectation-maximization
algorithm [20] to iteratively fine-tune the classifier and encoder. At the expecta-
tion step, we freeze the classifier and supervise the encoder with extra balancing
constraints to avoid being re-contaminated by the long-tailed label space. Thus,
we adopt the generalized cross-entropy (GCE) loss [30] for the expectation step
as follows:

LE
stage2 =

1
N

∑

x∈X

(1 − (f · gI(x)y)q)
q

, (6)

where q is a hyper-parameter to control the trade-off between the imbalance
calibration and the classification task. At the maximization step, we freeze the
encoder and train the classifier on the impartial feature space. By enriching
the semantic features with balanced virtual features, our MRC-VFC framework
can improve the classification performance in long-tailed datasets, especially the
performance of minority categories.
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Table 1. Comparison with state-of-the-art algorithms on the ISIC-2019-LT dataset.

ISIC-2019-LT

Methods Acc (%) @ Factor = 100 Acc (%) @ Factor = 200 Acc (%) @ Factor = 500

CE 56.91 53.77 43.89

RS 61.41 55.12 47.76

MixUp [27] 59.85 54.23 43.11

GCE+SR [32] 64.57 58.28 54.36

Seesaw loss [26] 68.82 65.84 62.92

Focal loss [16] 67.54 65.93 61.66

CB loss [8] 67.54 66.70 61.89

FCD [15] 70.15 68.82 63.59

FS [12] 71.97 69.30 65.22

Ours w/o MRC 75.04 73.13 70.13

Ours w/o VFC 72.91 71.07 67.48

Ours 77.41 75.98 74.62

3 Experiments

3.1 Datasets

To evaluate the performance on long-tailed medical image classification, we con-
struct two dermatology datasets from ISIC1 [25] following [12]. In particular,
we construct the ISIC-2019-LT dataset as the long-tailed version of ISIC 2019
challenge2, which includes 8 diagnostic categories of dermoscopic images. We
sample the subset from Pareto distribution [8] as Nc = N0(r−(k−1))c, where the
imbalance factor r = N0/Nk−1 is defined as the sample number of the head class
N0 divided by the tail one Nk−1. We adopt three imbalance factors for ISIC-
2019-LT, as r = {100, 200, 500}. Furthermore, the ISIC-Archive-LT dataset [12]
is sampled from ISIC Archive with a larger imbalance factor r ≈ 1000 and con-
tains dermoscopic images of 14 classes. We randomly split these two datasets
into train, validation and test sets as 7:1:2.

3.2 Implementation Details

We implement the proposed MRC-VFC framework with the PyTorch library
[22], and employ ResNet-18 [11] as the encoder for both long-tailed datasets. All
the experiments are done on four NVIDIA GeForce GTX 1080 Ti GPUs with a
batch size of 128. All images are resized to 224 × 224 pixels. In the first stage of
MRC-VFC, we train the model using Stochastic Gradient Descent (SGD) with a
learning rate of 0.01. For the strong augmentation [3], we utilize the random flip,
blur, rotate, distortion, color jitter, grid dropout, and normalization, and adopt
the random flip and the same normalization for the weak augmentation. In the
second stage, we use SGD with a learning rate of 1 × 10−5 for optimizing the
classifier and 1 × 10−6 for optimizing the encoder, respectively. The loss weights
1 https://www.isic-archive.com/.
2 https://challenge.isic-archive.com/landing/2019/.

https://www.isic-archive.com/
https://challenge.isic-archive.com/landing/2019/
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Table 2. Comparison with state-of-the-art algorithms on the ISIC-Archive-LT dataset.

ISIC-Archive-LT

Methods Head (Acc%) Medium (Acc%) Tail (Acc%) All (Acc%)

CE 71.31 49.22 38.17 52.90

RS 70.17 55.29 34.29 53.25

GCE+SR [32] 64.93 57.26 38.22 53.47

Seesaw loss [26] 70.26 55.98 42.14 59.46

Focal loss [16] 69.57 56.21 39.65 57.81

CB loss [8] 64.98 57.01 61.61 61.20

FCD [15] 66.39 61.17 60.54 62.70

FS [12] 68.69 58.74 64.48 63.97

Ours w/o MRC 69.06 62.14 65.12 65.44

Ours w/o VFC 65.11 62.35 67.30 64.92

Ours 69.71 63.47 70.34 67.84

λ1, λ2 and λ3 in the first stage are set as 10, 10 and 5, and the q in the second
stage is set as 0.8. We set training epochs as 100 for the first stage and 500 for
the second stage. The source code is available at https://github.com/jhonP-Li/
MRC VFC.

3.3 Comparison on ISIC-2019-LT Dataset

We evaluate the performance of our MRC-VFC framework with state-of-the-art
methods for long-tailed medical image classification, including (i) baselines: fine-
tuning classification models with cross-entropy loss (CE), random data resam-
pling methods (RS), and MixUp [27]; (ii) recent loss reweighting methods: Gen-
eralized Cross-Entropy with Sparse Regularization (GCE+SR) [32], Seesaw loss
[26], focal loss [16], and Class-Balancing (CB) loss [8]; (iii) recent works for long-
tailed medical image classification: Flat-aware Cross-stage Distillation (FCD)
[15], and Flexible Sampling (FS) [12].

As illustrated in Table 1, we compare our MRC-VFC framework with the
aforementioned methods on the ISIC-2019-LT dataset under different imbalance
factors. Among these methods, our MRC-VFC framework achieves the best per-
formance with an accuracy of 77.41%, 75.98%, and 74.62% under the imbalance
factor of 100, 200, and 500, respectively. Noticeably, compared with the state-of-
the-art decoupling method FCD [15] on long-tailed medical image classification,
our MRC-VFC framework surpasses it by a large margin of 11.03% accuracy
when the imbalance factor is 500, demonstrating the effectiveness of representa-
tion learning and virtual features compensation in our framework. Furthermore,
our MRC-VFC framework outperforms FS [12], which improves the resampling
strategy and achieves the best performance on the ISIC-2019-LT dataset, with
an accuracy increase of 9.4% under imbalance factor = 500. These experimental
results demonstrate the superiority of our MRC-VFC framework over existing
approaches in long-tailed medical image classification tasks.

https://github.com/jhonP-Li/MRC_VFC
https://github.com/jhonP-Li/MRC_VFC
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Fig. 2. The performance comparison of head/tail classes in ISIC-Archive-LT dataset.

Ablation Study. We perform the ablation study to validate the effectiveness
of our proposed MRC and VFC modules on two long-tailed datasets. As shown
in Table 1 and 2, both MRC and VFC modules remarkably improve the perfor-
mance over the baselines. In particular, we apply two ablative baselines of the
proposed MRC-VFC framework by disabling the MRC (denoted as Ours w/o
MRC) and the VFC (denoted as Ours w/o VFC) individually. In detail, as shown
in Table 1, when the imbalance factor is 500, the accuracy increases by 4.49%
and 7.14% for MRC and VFC, respectively. In addition, as illustrated in Table 2,
the mean accuracy of all classes in the ISIC-Archive-LT shows an improvement
of 2.40% and 2.92% for MRC and VFC correspondingly. The ablation study
verifies the effectiveness of our MRC and VFC modules.

3.4 Comparison on ISIC-Archive-LT Dataset

To comprehensively evaluate our MRC-VFC framework, we further perform the
comparison with state-of-the-art algorithms on a more challenging ISIC-Archive-
LT dataset for long-tailed diagnosis. As illustrated in Table 2, our MRC-VFC
framework achieves the best overall performance with an accuracy of 67.84%
among state-of-the-art algorithms, and results in a balanced performance over
different classes, i.e., 69.71% for head classes and 70.34% for tail classes. Com-
pared with the advanced decoupling method [15] for medical image diagnosis,
our MRC-VFC framework significantly improves the accuracy with 4.73% in
medium classes and 8.87% in tail classes, respectively.

Performance Analysis on Head/Tail Classes. We further present the per-
formance of several head and tail classes in Fig. 2. Our MRC-VFC framework
outperforms FS [12] on both tail and head classes, and significantly promotes the
performance of tail classes, thereby effectively alleviating the affect of long-tailed
problems on medical image diagnosis. These comparisons confirm the advantage
of our MRC-VFC framework in more challenging long-tailed scenarios.

4 Conclusion

To address the long-tails in computer-aided diagnosis, we propose the MRC-
VFC framework to improve medical image classification with balanced perfor-
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mance in two stages. In the first stage, we design the MRC to facilitate the
representation learning of the encoder by introducing multi-view relation-aware
consistency. In the second stage, to recalibrate the classifier, we propose the VFC
to train an unbias classifier for the MRC-VFC framework by generating mas-
sive virtual features. Extensive experiments on the two long-tailed dermatology
datasets demonstrate the effectiveness of the proposed MRC-VFC framework,
which outperforms state-of-the-art algorithms remarkably.

Acknowledgments. This work was supported in part by the InnoHK program.
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